Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(19): 23834-23843, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37140618

RESUMO

Cannabidiol (CBD) has been shown to have antioxidant and antibacterial effects. The investigation into CBD's potential as an antioxidant and antibacterial agent, meanwhile, is still in its initial stages. The study goals were to prepare encapsulated cannabidiol isolate (eCBDi), evaluate the effect of eCBDi edible active coatings on the physicochemical properties of strawberries, and determine whether CBD and sodium alginate coatings could be used as a postharvest treatment to promote antioxidation and antimicrobial activity and prolong the strawberry shelf life. A well-designed edible coating on the strawberry surface was achieved using eCBDi nanoparticles in combination with a sodium alginate polysaccharide-based solution. Strawberries were examined for their visual appearance and quality parameters. In the results, a significantly delayed deterioration was observed in terms of weight loss, total acidity, pH, microbial activity, and antioxidant activity for coated strawberries compared to the control. This study demonstrates the capability of eCBDi nanoparticles as an efficient active food coating agent.


Assuntos
Canabidiol , Filmes Comestíveis , Fragaria , Nanopartículas , Antioxidantes/química , Conservação de Alimentos/métodos , Canabidiol/farmacologia , Frutas/química , Antibacterianos/análise , Alginatos
2.
Polymers (Basel) ; 15(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36904331

RESUMO

Bacterial infection and inflammation caused by excess oxidative stress are serious challenges in chronic wound healing. The aim of this work is to investigate a wound dressing based on natural- and biowaste-derived biopolymers loaded with an herb extract that demonstrates antibacterial, antioxidant, and anti-inflammatory activities without using additional synthetic drugs. Turmeric extract-loaded carboxymethyl cellulose/silk sericin dressings were produced by esterification crosslinking with citric acid followed by freeze-drying to achieve an interconnected porous structure, sufficient mechanical properties, and hydrogel formation in situ in contact with an aqueous solution. The dressings exhibited inhibitory effects on the growth of bacterial strains that were related to the controlled release of the turmeric extract. The dressings provided antioxidant activity as a result of the radical scavenging effect on DPPH, ABTS, and FRAP radicals. To confirm their anti-inflammatory effects, the inhibition of nitric oxide production in activated RAW 264.7 macrophages was investigated. The findings suggested that the dressings could be a potential candidate for wound healing.

3.
Gels ; 9(1)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36661819

RESUMO

In daily life, people are often receiving minor cuts due to carelessness, leaving wounds on the skin. If wound healing is interrupted and the healing process does not finish, pathogens can easily enter wounds and cause infection. Liquid bandages are a fast and convenient way to help stop the bleeding of superficial wounds. Moreover, antibacterial agents in liquid bandages can promote wound restoration and fight bacteria. Herein, a poly(vinyl alcohol) (PVA) liquid bandage incorporating copper iodide nanoparticles (CuI NPs) was developed. CuI NPs were synthesized through green synthesis using gallic acid (GA) as a reducing and capping agent. The sizes of the CuI NPs, which were dependent on the concentration of GA, were 41.45, 43.51 and 49.71 nm, with the concentrations of gallic acid being 0, 2.5 mM and 5.0 mM, respectively. CuI NPs were analyzed using FTIR, XRD and SEM and tested for peroxidase-like properties and antibacterial activity. Then, PVA liquid bandages were formulated with different concentrations of stock CuI suspension. The results revealed that PVA liquid bandages incorporating 0.190% CuI synthesized with 5.0 mM of GA can kill bacteria within 24 h and have no harmful effects on human fibroblast cells.

4.
Gels ; 8(9)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36135285

RESUMO

This study concentrated on developing quercetin/cyclodextrin inclusion complex-loaded polyvinyl alcohol (PVA) hydrogel for enhanced stability and solubility. Quercetin was encapsulated in hydroxypropyl-ß-cyclodextrin (HP-ß-CD) by the solvent evaporation method. The prepared quercetin/HP-ß-CD inclusion complex showed 90.50 ± 1.84% encapsulation efficiency (%EE) and 4.67 ± 0.13% loading capacity (%LC), and its successful encapsulation was confirmed by FT-IR and XRD. The quercetin/HP-ß-CD inclusion complex was well dispersed in viscous solutions of PVA in various amounts (0.5, 1.0, 1.5. 2.5, and 5.0% w/v ratio), and the drug-loaded polymer solution was physically crosslinked by multiple freeze-thaw cycles to form the hydrogel. The cumulative amount of quercetin released from the prepared hydrogels increased with increasing concentrations of the inclusion complex. The introduction of the inclusion complex into the PVA hydrogels had no influence on their swelling ratio, but gelation and compressive strength reduced with increasing inclusion complex concentration. The potential cytotoxicity of quercetin/HP-ß-CD inclusion complex hydrogels was evaluated by MTT assay and expressed as % cell viability. The results show biocompatibility toward NCTC 929 clone cells. The inhibitory efficacy was evaluated with 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay, and the results show a higher level of antioxidant activity for quercetin/HP-ß-CD inclusion complex hydrogels compared with free quercetin. The findings of our study indicate that the developed quercetin/HP-ß-CD inclusion complex hydrogels possess the required properties and can be proposed as a quercetin delivery system for wound-healing applications.

5.
Int J Biol Macromol ; 193(Pt A): 799-808, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34743940

RESUMO

Tissue engineering is a promising approach to repair and regenerate damaged or lost tissues or organs. In dental aspect, reconstruction of the resorbed alveolar bone after tooth extraction plays an important role in the success of dental substitution, especially in dental implant treatment. The hydroxyapatite (HA)-incorporated fibroin-alginate composite injectable hydrogel was fabricated to be used as scaffold for bone regeneration. HA was synthesized from eggshell biowaste. Fibroin was extracted from Bombyx mori cocoon. The synthesized HA, fibroin and alginate hydrogel were characterized. HA-incorporated fibroin-alginate hydrogel had decreased pore size and porosity compared with pure alginate hydrogel. Thermal analysis showed that hydrogel had a degradation peak of approximately 250 °C. Hydrogel could absorb water, with a swelling ratio of around 300% at 24 h. Hydrogel was degraded as time passed and almost completely degraded at day 7. Its compressive Young's modulus was approximately 0.04 ± 0.02 N/mm2 to 0.10 ± 0.02 N/mm2. Primary cytotoxicity test indicated non-toxic potential of the fabricated hydrogel. Increased ALP activity was observed in MC3T3-E1 cultured in HA-incorporated fibroin-alginate hydrogel. Results suggested the potential use of injectable HA fibroin-alginate hydrogel as dental scaffolding material. Further studies including in vivo examinations are needed prior to its clinical application.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Engenharia Tecidual/métodos , Alicerces Teciduais , Alginatos/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Durapatita/química , Casca de Ovo/química , Fibroínas/química , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos
6.
Int J Biol Macromol ; 162: 1937-1943, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827618

RESUMO

In this work, biopolymer hydrogels were synthesized by mixing hyaluronic acid, hydrolyzed collagen, and chitosan through a solvent evaporation method and incorporating them with caffeic acid as an antioxidant agent. The obtained caffeic acid-loaded chitosan/hydrolyzed collagen/hyaluronic acid hydrogels were characterized by X-ray diffraction, differential scanning calorimetry and thermogravimetric analysis. No significant change on structural and thermal properties was observed. Furthermore, scanning electron microscope reported that the surface morphology of the hydrogels was smooth, and no significant change in porosity was observed after the addition of hyaluronic acid. With high amount of hyaluronic acid, the swelling behaviour was superiority. The hydrogels showed an initial burst release of caffeic acid (~70%) within 60 min, followed by a gradual release of up to 80% by 480 min. The release was slightly higher with the presence of hyaluronic acid. In addition, DPPH, ABTS+, and FRAP assays revealed that the caffeic acid-loaded hyaluronic acid/hydrolyzed collagen/chitosan hydrogels exhibited antioxidant activity. Thus, these composites could potentially be used as dressing materials with antioxidant activity.


Assuntos
Ácidos Cafeicos/química , Quitosana/química , Colágeno/química , Ácido Hialurônico/química , Hidrogéis/química , Antioxidantes/química , Porosidade
7.
ACS Appl Mater Interfaces ; 11(31): 27677-27685, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31305061

RESUMO

Fully printable perovskite solar cells (PPSCs) attract attention in the photovoltaic industry and research owing to their controllable and scalable production with reduced material waste during manufacturing. However, the commercialization of PPSCs has been impeded by their inherent vulnerability to ambient moisture, leading to a rapid loss of device efficiency and lifetime. Here, we propose a novel idea to enhance the photovoltaic performance and stability of PPSCs in humid air (relative humidity exceeding 80%) using electrospun hydrophobic polymer membranes, i.e., polylactic acid (PLA), polycaprolactone (PCL), and PLA/PCL blends, as moisture-resistant layers for PPSCs. After optimizing the morphologies, hydrophobicity, and thermal properties of the electrospun membranes by varying the contents of the polymer components in the membranes, the unencapsulated devices with these membranes demonstrated power conversion efficiencies of up to 8.2%, which was significantly higher than for devices without the membranes (6.8%). Moreover, devices with the optimum electrospun membrane retained more than 85% of their original efficiency after being stored in humid air for over 35 days. In comparison, devices without the electrospun membranes lost about 50% of their initial efficiency over the same time. Our work is very useful for the development of highly efficient and stable commercial PPSCs.

8.
Microb Pathog ; 118: 290-300, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29578062

RESUMO

Essential oil of fresh leaves of Ocimum gratissimum (OGEO) was water-steam distilled and analyzed by GC-MS. Thirty-seven compounds were identified, with eugenol (55.6%) as the major component followed by cis-ocimene (13.9%), γ-muurolene (11.6%), (Z,E)-α-farnesene (5.6%), α-trans-bergamotene (4.1%), and ß-caryophyllene (2.7%). Antimicrobial activity of OGEO was tested against four gastroenteritis pathogens (Staphylococcus aureus, Escherichia coli, Salmonella Typhimurium, and Shigella flexneri). OGEO exhibited antibacterial effect, with MICs of 1-2 mg ml-1, against the tested species. OGEO also displayed rapid killing effect within 5 s at four times of MIC against both E. coli and S. Typhimurium. Various assays were performed to investigate the mode of action of the oil. OGEO increased the permeability of microbial cell membrane as evidenced by LIVE/DEAD BacLight assay. Analyses of the release of absorbing materials at 260 nm, protein leakage, SDS-PAGE, and SEM strongly suggested the disruptive action of the oil on the cytoplasmic membrane of the tested microorganisms. Results revealed that the antibacterial property of OGEO could be due to membrane disruption.


Assuntos
Antibacterianos/farmacologia , Gastroenterite/microbiologia , Ocimum/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Óleos de Plantas/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Eugenol/química , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , Óleos Voláteis/farmacologia , Pentanóis/química , Óleos de Plantas/química , Sesquiterpenos Policíclicos , Salmonella typhimurium/efeitos dos fármacos , Sesquiterpenos/química , Shigella flexneri/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
9.
RSC Adv ; 8(23): 12724-12732, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35541276

RESUMO

A facile one-pot and green method was developed to prepare a nanocomposite of gold nanoparticle (AuNP), graphene (GP) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). Graphene was first electro-exfoliated in a polystyrene sulfonate solution, followed by a one-step simultaneous in situ formation of gold nanoparticle and PEDOT. The as-synthesized aqueous dispersion of AuNP-GP-PEDOT:PSS was thereafter used to modify the glassy carbon electrode (GCE). For the first time, the quaternary composite between AuNP, GP, PEDOT and PSS was used for selective determination of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA). In comparison to a bare GCE, the nanocomposite electrode shows considerably higher electrocatalytic activities toward the oxidation of DA and UA due to a synergistic effect between AuNP, GP, PEDOT and PSS. Using differential pulse voltammetry (DPV), selective determination of DA and UA in the presence of AA could be achieved with a peak potential separation of 110 mV between DA and UA. The sensor exhibits wide linear responses for DA and UA in the ranges of 1 nM to 300 µM and 10 µM to 1 mM with detection limits (S/N = 3) of 100 pM and 10 µM, respectively. Furthermore, the proposed sensor was also successfully used to determine DA in a real pharmaceutical injection sample as well as DA and UA in human serum with satisfactory recovery results.

10.
ACS Appl Mater Interfaces ; 4(6): 3031-40, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22577837

RESUMO

Caffeic acid (CA) was chemically immobilized onto the surfaces of the individual electrospun poly(l-lactic acid) (PLLA) fibers to enhance the hydrophilicity and impart the antioxidant activity to the obtained fibrous membranes. This was done in two sequential steps. First, amino groups were covalently introduced onto the surfaces through the reaction with 1,6-hexamethylenediamine (HMD). In the second step, the amino moieties reacted with CA, which had been preactivated sequentially with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The success of the reactions was confirmed by the ninhydrin assay and X-ray photoelectron spectroscopic analysis (XPS). Indirect cytotoxicity evaluation with murine dermal fibroblasts (L929) and human dermal fibroblasts (HDFa) revealed that the neat and the modified PLLA fibrous matrices released no substances in the levels that were harmful to the cells. Direct culturing of HDFa on these fibrous substrates indicated that they supported the proliferation of the cells on days 2 and 3 very well and that the CA-immobilized substrates exhibited the highest cell viability. Lastly, the antioxidant activity of the CA-immobilized substrates, as revealed by the 1,1-diphenyl-2-picryldrazyl (DPPH) radical scavenging assay, was as high as 88% on average.


Assuntos
Ácidos Cafeicos/química , Ácido Láctico/química , Polímeros/química , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Diaminas/química , Etildimetilaminopropil Carbodi-Imida/química , Ácido Láctico/farmacologia , Camundongos , Poliésteres , Polímeros/farmacologia , Succinimidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...